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Abstract : This paper presents the influence of free air in joints of concrete slabs 
of plunge pool linings on the pressure wave propagation in the joints and on the 
resulting net dynamic impulsions on the slabs. A general philosophy of pressure 
wave propagation in joints is procured, together with a simple analytical model 
showing the influence of the wave celerity on the net dynamic impulsions on the 
slabs. Furthermore, a two-phase transient model is used to compute the pressures 
and impulsions on a slab for a sinusoidal pressure signal as input. A comparison 
with pressures measured on near-prototype scaled experimental tests is provided.  
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1. INTRODUCTION 

The presence of free air in artificially simulated joints under the impact of high-velocity jets 
was found to have a considerable influence on the transient pressure pattern inside the joints 
(Bollaert, 2002a & 2002b; Bollaert & Schleiss 2001). The air makes the flow mixture in the 
joint highly compressible and causes a significant decrease in celerity of the pressure waves 
that are generated by the impacting jet. The cyclic pressure excitation of the jet at the entrance 
of the joint can, under certain circumstances, be capable to create pressure amplification and 
resonance effects in the joint. This depends on the celerity, the total length of the joint and the 
end conditions of the joint, conform the principles of a resonator system.  
 
Furthermore, the exact amount of free air in the joint, and thus also the exact wave celerity, 
changes continuously as a function of the instantaneous pressure values in the joint. This 
makes the pressure wave propagation in the joint highly non-linear and causes the appearance 
of peak pressures, which completely modify the pressure field and corresponding impulsions. 
 
In the following, this principle has been applied to joints underneath concrete slabs of plunge 
pool linings of high-head dams, in order to point out the influence on possible failure of the 
slabs by dynamic uplift. Dynamic uplift is caused by the built-up of a net difference in 
pressures over and underneath the slab. The persistency (integration) with time of this 
difference in pressures defines the value of the net uplift impulsion on the slab. This net 
impulsion is able to eject the slab from its surroundings (Fiorotto & Rinaldo 1992). Well-
known cases are failures at Malpaso Dam (Mexico), Tarbela Dam (Pakistan) and Karnafuli 
Dam (Pakistan). Other cases of violent pressure wave propagation in joints have been noticed 
in the field of rock cliff erosion by dynamic wave impact (Müller 1997).  
 
First, it will be shown that the presence of air generates net dynamic uplift impulsions on the 
slabs that are completely different than for pure water. Then, the non-linear character of the 
pressure wave propagation, which completely modifies the pressures in the joint and the net 
uplift impulsion on the concrete slabs, is highlighted by use of a numerical model.  



2. PRESSURE WAVE PROPAGATION IN JOINTS 
 
PHILOSOPHY 
Pressure wave propagation in joints is largely influenced by the boundaries, which can reflect 
the incoming waves. The adopted approach is based on the simplest cases, i.e. open or closed-
end boundaries. These are similar to open or closed-end rock joints and joints underneath 
concrete slabs. Jet impact on a joint has all elements of a resonator system: the jet provides a 
periodic excitation and the joint is a resonance chamber. The boundaries are formed by the 
rock and/or the concrete slabs. The periodic nature of the jet excitation is defined by its 
spectral content. This causes resonance effects whenever part of the spectral content 
(turbulent eddies) of the jet is situated near the natural frequencies of the joint. At each cycle, 
additional energy can so be injected into the system. When this periodical energy injection is 
higher than the periodical energy dissipation, resonance conditions might occur.  
 
These conditions typically happen at or near the theoretical natural frequencies or eigen-
frequencies of the system in question. For joints in rock or in between concrete slabs of 
plunge pool linings, two main boundary systems can be distinguished:  

- the open-closed boundary system, relevant to joints that are not fully formed, λ/4 – 
resonator, with resonance frequencies at fres = (1+2n)⋅(c/4L), n = 0, 1, 2, … 

- the open-open boundary system, for joints formed by distinct rock blocks or concrete 
slabs, λ/2 – resonator, with resonance frequencies at fres = (n)⋅(c/4L), n = 1, 2, 3… 

 
in which c is the wave celerity and λ is the wavelength (=c/f). This is presented in Figure 1. 
Due to the compressibility of the flow mixture inside the joint, an infinite number of modes of 
oscillation exist, just like the vibrations of a mechanical system with an infinite number of 
masses and springs. The first mode of vibration is the fundamental or first harmonic; the 
others are higher harmonics. An open boundary corresponds to a pressure node; a closed 
boundary is an antinode. For the open-closed system, there is a pressure node during even 
harmonics (2nd, 4th, …) and an antinode during odd harmonics (1st, 3rd, …). For the open-open 
system, two pressure nodes always exist. The exact location of nodes and antinodes depends 
upon the harmonic at which the system is oscillating. 
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Figure 1   Two basic joint configurations with well-defined boundaries. The terminations are considered to be 

perfectly weak (open boundary) or perfectly rigid (closed boundary).  



SIMPLIFIED MODEL SHOWING CELERITY INFLUENCE 
Forces on a concrete slab 
A simplified and comprehensive analytical model is used to point out the influence of the 
pressure wave celerity on the net dynamic impulsion on concrete slabs. The net impulse 
I∆tpulse, corresponding to a pressure pulse of duration ∆tpulse, is defined by integrating the force 
equilibrium at every time step of the pulse. This time step is small so that no significant 
pressure gradients occur. This results in an uplift velocity V∆tpulse. The net impulse is written: 

( )∫
∆

∆∆ ⋅=⋅−−−=
tpulse

0
tpulseshboutpulse VmdtFGFFI     (1) 

in which m stands for the mass of the slab, Fu and Fo the pressure forces under and over the 
slab, Gb the immerged weight of the slab and Fsh eventual shear forces along the joint sur-
faces. The pressure distributions above and underneath the slab are spatially integrated. 
However, due to violent transient effects, the pressure gradient with time is generally much 
higher than the pressure gradient with space. Therefore, as a first approximation, a space-
averaged value is chosen. The kinetic energy given to the slab is simply transformed into 
potential energy as a function of the mass of the slab. The total uplift displacement hup and the 
mass m of the slab are written: 

uptpulse hg2V ⋅⋅=∆     (2)   ( )zyxVolumem ⋅⋅⋅ρ=⋅ρ=     (3) 

in which ρ stands for the density of the concrete and x, y and z respectively for the 
longitudinal, transversal and vertical dimensions of the slab. Furthermore, the weight of the 
slab and the pressure forces over and under the slab directly depend on the horizontal surface, 
i.e. x·y. Therefore, when neglecting the shear forces Fsh, which depend on the vertical length 
z, this product can be eliminated from both the left and right hand side of eq. (1). As a result, 
the uplift velocity V∆tpulse is inversely proportional to the height of the slab z. According to eq. 
(2), the uplift displacement hup of a slab is inversely proportional to the square of its height z2. 
This shows that failure criteria based on uplift of concrete slabs are considerably influenced 
by the height of the slab. A simple computation demonstrates this dependence.  
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  a)         b) 

Figure 2   Pressure pulses applied underneath a concrete slab of height z and length l: a) geometrical situation, 
b) triangular shape and rectangular simplification of the pressure pulse. 

 
Dynamic pressure field underneath the slab 
Assuming a two-dimensional problem, the form factor of the slab can be defined as the ratio 
of the height to the horizontal extension z/l. The abovementioned philosophy has been 
followed for a constant pressure head of 50 and 100 m. This pressure is applied underneath a 
slab of height z and length l, at both joint entrances, as indicated in Figure 2a. The pressures 
over the slab are neglected for sake of simplicity. Furthermore, the time period of application 
of the underpressure is defined in accordance with Figure 2b. Each of the pulses has a value p 
and a time duration ∆t = (l/c), thus neglecting the height z in the total joint length. Due to 



superposition of the pulses under the slab, the total time duration is equal to 2∆t and of 
triangular shape. In the following, this triangular shape has been simplified to a rectangular 
one with the same surface (= impulsion) but for a constant pressure value p.  
 
Figure 3a presents the influence of the form factor z/l on the non-dimensional uplift dis-
placement hup/z for a slab length l of 3 m. The impulse on the slab has been calculated for two 
wave celerities: 600 m/s and 1’000 m/s. The celerity has a significant influence on the time 
duration of the pressure pulse and thus on the uplift velocity that is finally given to the slab. 
Figure 3b shows the same relationship, but for a length that is equal to one third of the initial 
one, i.e. 1 m. The concrete slab is ejected more easily, but neglecting the side lengths is of 
importance in this case. Again the significance of the celerity is pointed out. The minimum 
uplift displacement hcr necessary for ejection is assumed equal to the height of the slab z.  
 
It can be concluded that the form factor z/l is of primary importance on the ejection of the 
slab. Secondly, within the limits of this simple model, the absolute dimensions of the slab 
seem also to be of significance. This, of course, under the assumption that the surface pressure 
is neglected. The importance of the form factor decreases for decreasing slab dimensions.  
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          a)                   b) 

Figure 3   Non-dimensional concrete slab displacement as a function of the form factor z/l and for different 
pressure wave celerities c: a) concrete slab of length l = 3 m, b) concrete slab of length l = 1 m. 

 
 
TWO-PHASE TRANSIENT MODEL FOR DYNAMIC UPLIFT OF SLABS 
Basic equations 
A basic numerical model of pressurized flow in 1D joints uses the transient flow equations for 
a homogeneous two-phase fluid. This means that the air-water mixture is simulated as a 
pseudofluid with average properties and, thus, only one set of conservation equations. The 
compressibility and the pressure wave celerity c of the mixture strongly depend on the volume 
of free air in the liquid. Therefore, when neglecting any exchange between the phases in the 
conservation equations, a constitutive relationship between the wave celerity c and the 
pressure p has to be added. The mass and momentum equations of the pseudofluid are 
expressed as follows (Bollaert, 2002b): 
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in which p is the pressure head (m), V the mean velocity (m/s), and c the wave celerity (m/s). 
The terms λ, η and β account for steady, unsteady and uneven velocity distribution friction 
losses. They incorporate all possible energy losses and cannot be compared with the Darcy-
Weisbach friction term that is usually applied for one-phase steady-state flow. Especially the 
value of λ is often quite different, due to the particular damping effect generated by the two-
phase transient character of the flow. Further details can be found in Bollaert (2002b). 
 
The form of the constitutive equation that relates the celerity c with the pressure p is defined 
by physical laws that describe the volume and the quantity of free air in a liquid as a function 
of pressure (ideal gas law, Henry’s law). This background will not be outlined herein. Based 
on c-p relationships as derived from prototype-scaled experimental tests (Bollaert 2002b; 
Bollaert & Schleiss 2001), it is assumed that a quadratic relationship is appropriate: 

( ) ( ) ( )tpktpkktc 2
321 ⋅+⋅+=            (6) 

in which k1, k2 and k3 are parameters defined based on experimental data. 
 
Celerity-pressure relationships 
Appropriate celerity-pressure relationships have been derived from prototype-scaled 
experimental tests and from numerical optimizations of the k-parameters in eq. (6). This has 
resulted in relations 1 and 2 at Table 1 and in Figure 4: 
 

  parameters   k1  k2 k3 
  c-p relation 1   20 100  3 
  c-p relation 2     0   50  0 
  c-p relation 3 200     0  0 

Table 1: Parameters of the c-p relations as derived from measured data 
 
Relation 1 corresponds to measured data in closed -end joints, for jet impact velocities close 
to prototype values (up to 30 m/s) and with considerable air entrainment in the plunge pool 
and in the joints. Relation 2 also represents high jet velocities and air entrainment and was 
measured for open-end joints (underneath slab). In the following, these relationships are 
presented and a comparison is made with the assumption of a constant wave celerity of 200 
m/s, i.e. c-p relation 3. 
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Figure 4:  Measured data and derived c-p relationships 



Comparison of variable and constant celerity-pressure relationships 
A comparison is made between the different c-p relations as presented at Table 1 and in 
Figure 4, by applying a simple sinusoidal pressure signal at both joint entrances of a concrete 
slab following Figure 2a. This signal has a frequency of 10 Hz and represents plausible 
pressure values fluctuating between 10 and 40 m of absolute pressure head (Bollaert 2002b). 
The total length of the joint L is assumed 8 m. For a constant wave celerity c = 200 m/s, this 
results in a theoretical fundamental resonance frequency fres = 200/(2x8) = 12.5 Hz (Figure 1), 
i.e. close to the frequency of the incoming pressure signal. 
 
First of all, a comparison is made between relation 1 and relation 3 (Table 1) assuming that 
there is no phase difference between the pressures that enter the joint, i.e. the two pulses are 
perfectly in-phase (phase difference φ = 0). Furthermore, the λ-parameter in eq. (5) is equal to 
0.25 (Figure 5a) and 0.50 (Figure 5b). These were found to be plausible friction values for 
impact velocities of 10-25 m/s (Bollaert 2002b). The influence of β and η is neglected.  
 
 

0
1
2
3
4
5
6
7
8
9

10
11
12

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
Time [seconds]

A
bs

ol
ut

e 
pr

es
su

re
 [1

0r
e

Pressure signal at entrances of rock joint
Pressure signal at middle of rock joint - celerity varies with pressure
Pressure signal at middle of rock joint - celerity fixed at 200 m/s

 

0
1
2
3
4
5
6
7
8
9

10
11
12

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
Time [seconds]

Ab
so

lu
te

 p
re

ss
ur

e 
[1

0+1
 m

]
Pressure signal at entrances of rock joint
Pressure signal in middle of rock joint - celerity fixed at 200 m/s
Pressure signal in middle of rock joint - celerity varies with pressure

 
 a)             b) 

Figure 5:  Comparison of c-p relation 1 with c-p relation 3 for a sinusoidal pressure signal at the joint 
entrances: a) friction factor λ = 0.25; b) friction factor λ = 0.50.  

 
 
The c-p relation 1, expressing a celerity that varies with pressure, results in highly peaked 
pressures during a short time interval, while the constant celerity assumption (c-p relation 3) 
leads to a pressure signal that is very close to the input pressure signals. Especially for higher 
friction values, the non-linear assumption of variable celerities will result in higher net 
impulsions on the concrete slabs than the constant celerity assumption. The pressures obtained 
at constant celerity and for a friction factor of 0.25 are unrealistic because they are less than 
the atmospheric pressure (10 m of pressure head), which is physically not plausible given the 
high air content and thus the absence of cavitation effects. Therefore, their corresponding net 
impulsion is unrealistic.  
 
Secondly, Figures 6a & 6b present the same situation but for a phase difference of φ = π/2 
between the incoming pressure pulses at the joint entrances. The assumption of a constant 
celerity (c-p relation 3) generates no noticeable impulsion on the slab, whereas the non-linear 
assumption (c-p relation 1) results in a peaked net uplift pressure and impulsion. This is 
particularly valid at low to moderate friction factors and decreases with increasing friction.  
 
Finally, for a phase difference of φ = π (Figures 6c & 6d), only the assumption of variable 
celerity (c-p relation 1) generates some net uplift pressure and impulsion on the slab. This 
impulsion, however, seems to be rather insignificant compared to the aforementioned cases. 
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  c)              d) 

Figure 6:  Comparison of c-p relations for a sinusoidal pressure at the joint entrances and a phase difference 
of: a) φ = π/2 and λ = 0.25; b) φ = π/2 and λ = 0.50; c) φ = π and λ = 0.25; d) φ = π and λ = 0.50. 

 
 
Comparison of measured and computed pressures underneath slab 
Finally, the air-water numerical model has been verified by applying pressures at the joint 
entrances that have been measured during experimental tests (Bollaert 2002b). During these 
measurements, the pressure underneath the simulated slab has been recorded simultaneously 
with the surface pressures and a direct comparison between measured and computed values 
can be made.  The measured c-p relation for this test case is relation 2, involving a lot of free 
air in the joint (10 to 20 %). The jet impact velocity is 25 m/s and the friction factor λ = 0.25.  
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Figure 7:  Comparison of measured and computed pressures underneath concrete slab. 
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Figure 8:  Comparison of measured and computed pressures underneath concrete slab. 
 
 
Figure 7 shows that, for a variable celerity (relation 2), the computed pressures and corres-
ponding net impulsions (represented by grey and black surfaces) are in quite good agreement 
with the measured data. The general shape and values of the peak pressures are correctly 
generated. However, not all pressure peaks are apparent or at the right moment, due to the fact 
that the measured pressure signals at the joint entrances could not be made exactly at the 
entrances but somewhat aside (for technical reasons). This automatically induces errors and 
time lags between measurements and computations. Figure 8 presents the same information 
but for a constant celerity (relation 3). The measured pressures and impulsions are poorly 
reproduced by the computations, and pressure spikes appear that are physically not plausible. 
 

3. CONCLUSIONS 

Prototype-scaled measurements of pressures in joints underneath concrete slabs were found to 
be significantly influenced by the presence of free air. A simple analytical model determining 
the net impulsions on a slab indicates that the celerity of the pressure waves is of great signi-
ficance, as well as the variation of the celerity with pressure. Based on a two-phase transient 
numerical computation, it has been shown that the use of a constant celerity as a function of 
pressure poorly reproduces the measured pressure peaks, spikes and impulsions on the slabs. 
Introducing a variation of the celerity with pressure, based on physical laws, procures a much 
better agreement with the measured data. It is believed that the present information is of direct 
significance to design criteria for the safety of concrete slabs of plunge pool linings. 
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