Extreme Scour Prediction at High Head Concrete Dam and Stilling Basin (United States)

Dr Erik Bollaert

AquaVision Engineering Ltd. CH–1024 ECUBLENS SWITZERLAND

Vrchotic

US Army Corps of Engineers Sacramento UNITED STATES

<u>E-mail</u>: erik.bollaert@aquavision-eng.ch <u>Web</u>: http://www.aquavision-eng.ch Dr H.T. Falvey T. Falvey & Associates Colorado UNITED STATES

Physical processes of rock scour formation

Experimental facility at EPFL, Switzerland

Experimental facility at EPFL, Switzerland

- hydrodynamic forces in rock
- resistance criteria of fractured rock

Falling jet and plunge pool modules

Rock mass module: Hydrodynamic forces

AquaVision engineering Design and consulting in hydraulic,

Rock mass module: Fracture Mechanics Method

Rock mass module: Fracture Mechanics Method

Most relevant model parameters for practice:

- 1. UCS strength of rock mass
- 2. Initial degree of fracturing of rock mass
- 3. Flood durations
- 4. Amplification factor Γ^+ (air/tightness)
- 5. Initial jet turbulence and break-up jet (RMS)

Application to Kariba Dam (Bollaert, 2005):

AquaVision engineering

Design and consulting in hydraulic,

geotechnic and environmental engineering

Rock mass module: Fracture Mechanics Method

Complete parametric analysis can be found in :

Bollaert (2005): « The Influence of Geomechanic and Hydrologic Uncertainties on Scour at Large Dams: Case Study of Kariba Dam », 73rd Annual Meeting of ICOLD, Teheran, Iran

Rock mass module: Dynamic Impulsion Method

Application: High-Head Concrete Dam

High-Head Dam

- 100 m high concrete gravity dam
- 5 service spillway gates
- 3 emergency spillway gates
- 10 intermediate outlet works (3m x 4.5m)
- combination of crest flows + jet flows
- concrete lined stilling basin floor
 110 m long by 75 m wide, with end sill

Stilling Basin

Stilling Basin

- concrete lined stilling basin floor
 110 m long by 75 m wide, with end sill
- concrete slabs 15m x 15m, 1.5m thickness

AquaVision engineering

Design and consulting in hydraulic,

geotechnic and environmental engineering

Rock mass properties (in-situ)

	Joint Set 1 (JS 1)	Joint Set 2 (JS 2)	Joint Set 3 (JS 3)	
Orientation				
Strike	N38-55E	N71-90E	N30-80W	
• Dip	37 to 55 NW	64-87 SE	60-80NE	
Spacing	10' to 40'	About 1'	About 1'	
Persistance	100' plus	5' to 40'	3' to 30'	
Termination	N/A	JS1	JS1 and JS2	
Waviness	Planar to	Planar to	Planar to stepped	
	wavy	wavy		
Smoothness	Smooth to	Smooth to	Smooth to very rough	
	slightly rough	rough		
Aperture	Tight to very	Tight to	Tight to very tight	
	tight	very tight		
Infilling	Quartz, minor	Occasional	Occasional iron oxide, some	
	iron oxide,	iron oxide,	grout	
	sand, some	sand clay,		
	grout	some grout		
Wall rock alteration	None	None	None	

(after URS, 2001)

Sierra granite / quartz diorite

- Unconfined Compressive Strength ~ 130 MPa
- erosion resistant competent rock
- 3 main joint sets
- surface weathering of the rock
- faults and near-vertical shear zones of > 1m thickness
- blocky shape, height > side length

Rock mass properties (CSM model)

	Parameter	Symbol	Unit	VALUE
	Type of rock	-	-	granite
	Unconfined Compressive Strength	UCS	MPa	131
	In-situ stress ratio	K ₀	-	0
and the second se	Joint wave celerity for break-up	С	m/s	150
	Amplification factor Γ	-	-	2
Fracture	Number of joint sets	Nj	-	3
Mechanics	Typical maximum joint length	L	m	1
	Initial break-up of joint	Р	-	varies
	Form of joints	-	-	varies
	Fatigue sensibility	m _f		10
	Fatigue coefficient	C _f	-	1.00E-07
	Ratio height/side length of block	h _b /l _b	-	0.25
Dynamic	Density rock	γr	kg/m ³	2650
inpuision	Joint wave celerity for uplift	С	m/s	100

 $\begin{array}{ll} \text{Semi-elliptical (EL)}\\ \text{Circular (C)} \end{array} & \text{Single-edge (SE)} \end{array}$

Laboratory model tests (USBR, Denver)

<u>1/36 model</u>

- main functioning of jet flows and hydraulic jump in stilling basin
- pressure fluctuations on slabs and sidewalls
- 2D hydrodynamic pressure field on a slab
- flow turbulence and erosion potential in stilling basin and in downstream rock bed channel

<u>1/17 model</u>

- detailed functioning of jet flows
- detailed 2D hydrodynamic pressure field on slab
- input to transient numerical modelling of concrete slab uplift and design of anchors

(Bollaert et al. 2007, paper submitted to the Journal of Hydraulic Engineering, ASCE)

Application of Scour Model (service gates)

Determination of 2D dynamic surface pressure field

- mean values
- RMS values
- extreme values

Application of Scour Model (service gates)

Steps:

- Failure of one or more concrete slabs 1.
- Application of Fracture Mechanics Model (CFM) 2.
- 3. Analysis of dam and stilling basin stability

Application of Scour Model (service gates)

lining

lining

12 hours 24 hours concrete lining concrete lining Elevation [ft] 09 001 - centre hole upper tier - centre hole upper tier --- centre hole lower tier - - - centre hole lower tier - Erodibility Index - Erodibility Index Distance [ft] Distance [ft] 4 days 8 days ***** concrete lining conc 00 [ft] 09 00 00 001 [ft] 09 001 [ft] -centre hole upper tier centre hole upper tier centre hole lower tier - centre hole lower tier - Erodibility Index Erodibility Index Distance [ft] Distance [ft] 100 days 200 days concret lining concret 001 [ft] 09 Elevation [ft] 00 [ft] 09 00 00 -centre hole upper tier - centre hole upper tier - - - centre hole lower tier - - - centre hole lower tier Erodibility Index Erodibility Index Distance [ft] Distance [ft]

AquaVision engineering Design and consulting in hydraulic,

Application of Scour Model (emergency gates)

geotechnic and environmental engineering

			Ultimate Scour Elevation	Depth of Scour
		Flood duration h	m a.s.l.	m
	Fracture	24	no scour (50-55)	0
	Mechanics Model	192	46	4-9
		4800	24.5	26-31
	Dynamic Impulsion Model	infinity	17	33-38

\frown		Ultimate Scour Elevation	Depth of Scour
(2)	Flood duration	m a.s.l.	m
Fracture	24	no scour (64)	0
Machanics Model	192	64	0
wiechanics widder	4800	61.5	2.5
Dynamic Impulsion Model	infinity	22.5	41.5

Section A-A

- 1. For a flood discharge of 3,300 cms, passing through the upper and lower tiers of the outlet works, *only minor scour forms* along the sloped (upstream) part of the stilling basin bottom.
- 2. This scour forms almost completely *within the first few days of the event*.
- 3. Subsequent scour formation takes much more time to happen. No danger for dam stability is apparent.
- 4. Scour formation following 8,500 cms through the emergency spillway gates result in scour depths of about 26-31 m after very long times of discharge (hundreds of days) (Fracture Mechanics Model). This scour only forms locally, directly next to the left sidewall of the stilling basin, but may extend deeper than the concrete slabs of the stilling basin.
- 5. Application of the Dynamic Impulsion Model indicates a scour hole of about 40 m deep. This model, however, assumes fully broken up rock at all depths and is far too conservative.
- 6. Hence, it may be stated that, for an emergency flood through the emergency spillway gates, no significant scour will form into the downstream concrete plateau during the lifetime of the dam. Nevertheless, local minor scour may form and generate damage to the plateau.
- 7. Design of concrete slabs of stilling basin can be found in:

Bollaert (2004). "A new procedure to evaluate dynamic uplift of concrete linings or rock blocks in plunge pools", Symposium Hydraulics of Dams and River Structures, Teheran, Iran, pp. 125-132.