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ABSTRACT 

 

Dynamic uplift of concrete linings due to severe pressure fluctuations is of major concern 

to design engineers. The phenomenon has been extensively studied because of major 

failures in the sixties and seventies. Nevertheless, despite major advances in 

measurement technology and data acquisition, a safe and economic design method for 

any kind of concrete lined stilling basin is still missing today. Especially the dynamic or 

even transient character of pressure pulsations and their two-dimensional spatial 

distribution above and underneath the lining are not fully assessed and implemented.  

 

The present paper briefly outlines the main historic steps of the state-of-the-art in lining 

design and then presents a new design method for concrete lining uplift. This new 

physically-based method combines laboratory measurements of net uplift forces, 

prototype-scaled transient pressure recordings inside artificially generated lining fissures 

and numerical modeling of air-water pressure pulsations. This defines the time-dependent 

pressure field underneath the lining. At the upper face of the lining, a spatially distributed 

but time-averaged pressure field is considered. This finally provides a time-dependent net 

uplift pressure and impulsion on the concrete lining. Based on the differential equation of 

a spring-mass system accounting for lining inertia and anchor bar elastic properties, the 

most critical net uplift impulsion on the lining is then transformed into an equivalent most 

critical stress of the lining anchor bars, allowing sound dimensioning of the latter.  

 

In the following, the main steps of the new design method are presented and illustrated 

with real-life studies in the western US and in central Switzerland. 

 

 

INTRODUCTION 

 

Dynamic uplift of concrete linings due to severe pressure fluctuations is of major concern 

to design engineers. The phenomenon has been extensively studied because of failures in 

the sixties and seventies. Nevertheless, despite major advances in measurement 

technology and data acquisition, a safe and economic design method for any kind of 

concrete lined stilling basins is still missing today. Especially the dynamic or even 

transient character of pressure pulsations as a function of their two-dimensional spatial 

distribution above and underneath the lining is not fully assessed and implemented in 

existing design methods.  

 

Concrete slabs are used as bottom protection linings of spillway stilling basins. Their 

design focuses on stability and resistance to severe hydrodynamic loadings during floods. 

The way these extreme loadings are defined, however, has been subject to significant 
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debates since concrete slabs have at first been used. Initial design rules concentrated on 

resistance to impact pressures at the slab surface and on sound drainage of static pressure 

underneath the slabs. The shortcomings of such a design have been experienced during 

the 1960’s by major damage of several concrete linings. Well-known examples are 

Malpaso Dam (Mexico) and Karnafuli Dam (Bangladesh).  

 

The damage was found to be generated by sudden uplift or detachment of the slabs from 

the bottom (Bowers and Tsai, 1969; Sanchez and Viscaino, 1973). This uplift occurred at 

discharges much lower than the design discharge and, as an example, at Karnafuli Dam it 

was found to be generated by severe pressure fluctuations that may enter the outlets of 

the drain system and the joints between the slabs. This has stimulated researchers to 

investigate the presence of dynamic pressures underneath the slabs. These underpressures 

travel through the joints as pressure waves with celerities that are considered much higher 

than the travel velocity of the surface pressures from which they originate (Fiorotto and 

Rinaldo, 1992). They may generate instantaneous net uplift pressures that are able to 

destabilize the slabs. 

 

Determination of underpressures depends on the location and dimensions of both the slab 

joints and the pressure release pipes of the drainage system. Both types of discontinuities 

are present in a standard lining design and represent potential entries for underpressures. 

Therefore, slab joints are most often equipped with water stops that are designed to 

prevent pressure pulses at the slab surface from entering the joints. These water stops, 

however, age with time and subsequent flooding. Especially slab vibrations during floods 

may enhance deterioration of the water stops. Therefore, the use of water stops alone may 

not be considered as a sufficient countermeasure against slab uplift. Second, depending 

on the location of the pipe entries and the configuration of the network, drainage pipes 

may stimulate underpressures. Their influence on the generation and transfer of dynamic 

pressures underneath slabs is not fully understood yet.  

 

Theoretical and experimental research has been performed in the 1980’s and 1990’s to 

account for instantaneous dynamic underpressures in lining joints (Fiorotto and Rinaldo, 

1992; Bellin and Fiorotto, 1995; Fiorotto and Salandin, 2000), however without 

accounting for transient pressure wave effects. Bellin and Fiorotto (1995) directly 

measured uplift forces on laboratory scaled concrete slabs of different dimensions and  

subjected to hydraulic jump impact. The scale of the model did not allow detecting 

transient waves, however.  

 

Other small-scale experiments of uplift pressures on concrete slabs and/or blocks have 

been performed by Yuditskii (1963) for a ski-jump spillway, by Reinius (1986) for water 

flowing parallel to the foundation, and by Liu et al. (1998) for the Three-Gorges spillway. 

Lastly, Melo et al. (2006) proposed a concrete slab design method that is solely based on 

time-averaged net dynamic uplift pressures.  

 

It has to be outlined that all of these tests have been performed at a small scale that does 

not allow detecting pressure wave phenomena. Recently, prototype-scaled experiments 

performed in the field of fracturing of rock joints due to high-velocity jet impact (Bollaert 



and Schleiss, 2005; Bollaert, 2004) have shown that pressure waves in joints may travel 

at very low wave celerities, typically 50-200 m/s, due to the presence of air in the water. 

Hence, transient effects such as wave oscillations and resonance may be relevant when 

defining extreme pressures underneath concrete linings (Bollaert and Schleiss, 2005).  

 

As such, the present paper outlines a new design method for concrete linings of plunge 

pool stilling basins and illustrates the main steps of the method based on real-life case 

studies in the western US and in central Switzerland. 

 
THEORETICAL BASES OF CONCRETE LINING DESIGN 

 

General 

Design of concrete slabs for hydrodynamic loading focuses on the determination of the 

maximum possible net uplift pressure (force) and related impulsion. The net uplift 

pressure is defined by the net difference between surface pressures and underpressures at 

any given time instant. The net uplift impulsion is determined by the integration over 

time of the net uplift pressure. In the following, the methodology is outlined using 

pressures rather than forces (for a unitary slab surface). 

 

Pressures occurring at a lining surface can be described by dynamic pressure coefficients. 

These define the time-averaged pressure field and its spatial distribution over the surface 

of the lining. Underpressures are defined based on surface pressures that enter the joints 

between the slabs of the lining and the joints between the lining and its foundation. Slab 

uplift occurs when the time-averaged or instantaneous pressure (force) differences over 

and under the slabs are able to generate sufficient impulsion to displace the slab.  

 

First, both time-averaged and instantaneous spatial pressure distributions have to be 

assessed at the surface of the slab. The instantaneous spatial pressure distribution can be 

estimated by performing large-scale laboratory measurements, which define the spatial 

correlation of the pressure fluctuations. Pressure correlation contours often have integral 

scales that differ with flow direction. The integral scale is thereby defined as the distance 

over which, at the average, two pressure pulses become fully uncorrelated. In other 

words, it defines the maximum possible area over which a pulse may reasonably act. 

Often, these contours are complex and difficult to obtain because requiring a lot of 

measurements.  

 

Nevertheless, for slabs that are very large compared to the integral scales of the pressure 

pulses, the spatial distribution of the time-averaged surface pressure field constitutes a 

plausible alternative to pressure correlation contours (Melo et al., 2006). Hence, no 

detailed regarding the contours is needed. Figure 1 compares the time-averaged mean 

dynamic pressures with the instantaneous total dynamic pressures. For large slabs, the 

large number of pressure peaks and pressure spikes compensate each other and spatial 

integration of instantaneous total pressures corresponds quite well to the blue surface, i.e. 

the time-averaged dynamic pressure field.  
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Figure 1. Instantaneous versus Time-averaged Dynamic Pressures along Upper Face of 

Concrete Slab 
 

 

Second, slab uplift may be generated by pressures building up underneath the slab, in the 

confined area between the slab and its foundation. Transfer of pressures through the 

joints in between and underneath the slabs may then be considered in three ways: 

 

1. Time-averaged dynamic pressure field: the pressure field underneath the slab is 

solely defined by the time-averaged values of dynamic pressures acting at the 

entrance of the joints between the slabs (Melo et al., 2006). This is illustrated by 

the blue lines in Figure 1. 

2. Instantaneous dynamic pressure field: the pressure field underneath the slab is 

defined by both the time-averaged and the fluctuating part of the dynamic 

pressures acting at the entrance of the joints between the slabs (Fiorotto and 

Rinaldo, 1992). This is illustrated by the red lines in Figure 1.  

3. Transient dynamic pressure field: the pressure field underneath the slab is defined 

by the time-averaged and fluctuating part of the dynamic pressures at the entrance 

of the joints between the slabs and by transient waves propagating through the 

joints (Bollaert, 2004). This is illustrated by the orange line in Figure 1.  

 

Whether or not pressure waves may have an influence largely depends on the 

assumptions made on the wave celerity. Two main approaches exist: 

 



1. At high wave celerities, i.e. O(10
2
-10

3
) m/s, pressures travel quasi instantaneously 

through the joints and a net uplift pressure on the slab is the result of the 

difference between an instantaneous surface pressure field and its corresponding 

instantaneous underpressure field. Transient effects are neglected because 

occurring (and damped out) too fast for the turbulence at the surface. As such, the 

underpressure corresponds to the red line in Figure 1 and solely defined by 

instantaneous pressure pulses at the joint entrances. This is called a “dynamic” 

approach (Fiorotto and Rinaldo, 1992). 

2. At low wave celerities, i.e. O(10
1
-10

2
) m/s, and for large slab lengths of O(10

1
) m, 

a pressure wave needs time to be transferred all under the slab. When considering 

the joint as a resonator volume and the pressure pulses at the joint entrances as 

exciters, transient oscillations and even resonance conditions may occur, 

depending on the fundamental resonance frequency of the joint (Figure 2). For 

joint resonance frequencies that are close to the main frequencies of the impacting 

turbulent flow, pressures may amplify. Hence, underpressures are not only 

determined by instantaneous pulses at the joint entrances but also by the transient 

characteristics of the joints. This is called a “transient” approach (Bollaert, 2004). 

 

 
 

Figure 2. Main Resonating Frequencies of Lining Joint Excited by Surface Pressures 

 

Turbulent flow in stilling basins mainly occurs at rather low frequencies, i.e. a few Hz to 

tens of Hz (Toso and Bowers, 1988). To generate transient pressures, wave celerities 

have to be low and joint lengths have to be significant. Recent research (Bollaert, 2003) 

has shown that waves may travel at celerities that are very low, i.e. 50-200 m/s. This is 

due to the presence of free air in the flow mixture and is directly responsible for the 

appearance of transient effects in joints. Small-scale joint lengths and no air presence are 

the main reason that laboratory-scaled experiments are not able to generate such effects.  

 

The transient approach needs a quantification of pressure amplification inside the joints. 

This may be done in two ways: 1) by use of an appropriate pressure amplification 

coefficient (Bollaert, 2004); or 2) by direct numerical simulation of transient two-phase 

underpressures as a function of a time-dependent surface pressure field. The latter may be 

measured in the laboratory. Finally, a so generated net uplift pressure (force) may move 

the slab. For the most common case of anchored slabs, both the slab weight and the 

anchor stresses will prevent the slab from moving. This results in a dynamic equilibrium 

that is very similar to a spring-mass system as expressed by Newton’s law (Fiorotto and 

Salandin, 2000). For such a system, the persistence time is of importance.  



Differential equation for dynamic slab movement 

 

Based on Fiorotto and Salandin (2000), dynamic uplift of anchored concrete slabs may be 

expressed by the differential equation valid for a spring-mass system with a forced 

vibration by means of an external forcing function. Damping effects are neglected. This 

is a safe-side assumption that has its merit when using dynamic pressures. For transient 

pressures, however, damping effects have to be accounted for because highly fluctuating 

as a function of the amount of air inside the joints (Bollaert, 2003). The basic equation 

expresses a balance of stabilizing and destabilizing forces as a function of time: 

 
    tFtF destabstab    (1) 

 
Stabilizing forces are the slab mass m and the stresses induced in the steel anchors, based 

on their dynamic stiffness k. The equation then becomes: 

 

      tFtzktzm destab ''   (2) 

 

The slab mass is defined by the concrete density c and the height of the slab hs. The 

dynamic stiffness of the steel anchors is determined by the steel elastic modulus, the steel 

sectional area Ast and the length of the anchors Lst. The equilibrium may be written per 

unit of slab surface as follows (valid for positive displacements z(t)): 
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in which p(t) stands for the net uplift pressure on the slab. Solving this equation as a 

function of time expresses the uplift of the slab governed by the inertia of its mass and 

the stiffness of its anchors. During slab uplift, the uplift pressure pulse is assumed 

constant. Also, the elasticity of the water and the underlying rock are neglected. The 

standard solution of this 2
nd

 order linear differential equation with constant coefficients 

may be written: 
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The solution consists of the sum of two periodic motions at a different frequency but for 

the same amplitude. At present, the first motion on the right hand side of Equation (4) is 

constant (zero frequency) and the second motion on the right hand side is cosinusoidal 

with a frequency  and a period T that equal: 
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In other words, the function z(t) reaches its maximum value at time: 
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This corresponds to a maximum displacement of the slab (per unit of area) of: 
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The corresponding maximum possible steel stress is written: 
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As pointed out by Fiorotto and Salandin (2000), dynamic equilibrium thus results in steel 

stresses st,max that are twice as high as the static steel stress st,static. However, this 

dynamic steel stress can only be reached provided that the persistence time of the net 

uplift pressure equals or exceeds the time period T needed to build up the cosinusoidal 

motion of the slab. Also, the dynamic steel stress becomes equal to the static steel stress 

already at time instant T/2.  

 

Hence, the persistence time of the net uplift pressure is essential. Short-duration pulses 

are not able to develop the full cosinusoidal motion and, thus, static steel stresses are 

valid. Pulses of longer duration allow the cyclic motion and dynamic stresses to fully 

develop. 

 

  

NEW DESIGN METHOD FOR CONCRETE LINING UPLIFT 

 

Types of flow impact 

The new design method for uplift of concrete linings presented hereafter has been 

developed for two types of flow impact commonly encountered in plunge pool stilling 

basins: 1) hydraulic jump turbulent flow, and 2) falling jet turbulent flow.  

 

For falling jets, the flow conditions in the stilling basin are determined by the flow 

conditions at issuance of the jet and modified during the fall of the jet. Dam issuance 

conditions are defined by the outlet structure, the upstream head and energy losses. The 

principal forces that act on a jet during its fall are gravitational contraction, spread due to 

turbulence and air drag (Ervine and Falvey, 1987). These allow determination of the 



exact point of impact of the jet, as well as the geometric and hydraulic characteristics of 

the jet at this location.  

 

For hydraulic jumps, the flow conditions have to be determined at the beginning of the 

jump, i.e. near the toe of the dam. The flow conditions are first computed along the 

downstream face of the dam crest down to the dam toe. This defines the inflow 

conditions for the hydraulic jump. The main parameters of interest are the average flow 

velocity, the flow height and the Froude number at start of the jump. 

 

Dynamic pressures over the lining surface 

 

Falling jets and hydraulic jumps develop dynamic pressures that continuously fluctuate 

over the upper face of the lining of the stilling basin. 

 

As discussed before, the instantaneous pressures acting over the slab upper face can be 

approximated by their time-averaged values provided the slabs are large compared to the 

integral scales of the pressure fluctuations. Integral scales can be derived from available 

near-prototype scaled laboratory tests of high-velocity jet impact on slab joints (Bollaert 

and Schleiss, 2005). When a physical model is available, however, they may also be 

defined based on laboratory pressure fluctuation measurements. Integral scales can then 

be estimated by a correlation function based on data from the physical model, but 

approached by an exponential law    nen  , in which n stands for the characteristic 

length and  is a calibration coefficient (Fiorotto and Rinaldo, 1992). For hydraulic 

jumps, the characteristic length is equal to the incoming flow height. For jets, the 

characteristic length is equal to the jet diameter at impact. For jets, integral scales may be 

considered independent of flow direction, while for hydraulic jumps, the transversal 

integral scale is 5 to 6 times larger than the longitudinal one (Fiorotto and Rinaldo, 1992).  

 

The numerical grid used to compute the dynamic surface pressures over the slabs should 

not be coarser than the smallest integral scale of the pressure fluctuations. An example of 

a grid is presented in Figure 3 for a stilling basin in the US. The slabs are numbered 

alphabetically. A detailed grid is shown for slab W. Integral scales were in the order of 

1.5 m, i.e. one order of a magnitude smaller than the slab sizes. 

 

The parameters of interest are the mean dynamic pressures and the root-mean-square 

(RMS) and extreme values of the fluctuating dynamic pressures, as well as their 2D 

spatial extension. These values can be assessed by means of pressure coefficients. These 

coefficients are obtained by dividing the absolute pressure values (in [m]) by the 

incoming kinetic energy of the flow (V
2
/2g, in [m]). 

 

For falling jets, pressure coefficients can be estimated based on available laboratory 

experiments and corresponding theoretical developments (Ervine et al., 1997; Melo, 

2002; Bollaert, 2002; Melo et al., 2006). Similarly, for hydraulic jumps, dynamic 

pressures can be assessed based on literature (Toso and Bowers, 1988; Fiorotto and 

Rinaldo, 1992).  Theory and mathematical expressions can be found in detail in Bollaert 

(2005).  
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Figure 3. Numerical Grid Used to Compute Dynamic Pressures on a Stilling Basin Lining 

of a US Dam. 

 

 

Moreover, for hydraulic jumps, the pressure field is generally considered homogeneous 

in the lateral direction. For jets, however, the pressure field is considered two-

dimensional. Figure 4 presents the theoretically defined RMS dynamic pressure field for 

3,200 m
3
/s jet impact flow conditions at a dam in the US.  

 

 

Dynamic underpressures between the lining and its foundation 

 
Computational method: The underpressure field may be computed by determining the 

dynamic surface pressures that act on the joints between the slabs or on fissures created 

in the concrete of the slabs and by supposing that these pressure travel through the 

joints/fissures (by failure of the water stops). A safe side assumption is to consider the 

maximum possible pressures that may act along the surface along the joints. A more 

realistic assumption is probably to consider the mean dynamic surface pressures.  

 

The methodology proposed in here to define net uplift pressures and impulsions on a slab 

is of pseudo-2D character because performed separately along the X and Y directions in a 

1D manner (corresponding to the orthogonal joint directions in a Cartesian coordinate 

system). Potentially positive (pressure releasing) influences of the drainage system 

between the slabs and the foundation are safely neglected.  
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Figure 4. RMS Pressure Fluctuation Coefficients Generated by Multiple Jets Impacting 

the Stilling Basin Lining of a US dam: a) Plan view; b) Side View and Perspective View. 

 

 

The maximum dynamic pressure coefficients at the slab surface (Cmax) are first spatially 

averaged along each of the two opposite slab joints in both the X and the Y-direction 

(Figure 5). These “Cmax,average“ coefficients account for lateral diffusion of local pressure 

peaks through the slab joints. Then, the underpressure field is formed by taking the mean 

value of the two Cmax,average values and by applying an amplification factor  that accounts 

for transient effects. Next, this corrected value is applied to a percentage of the total area 

underneath the slab (Figure 5). Due to 2D diffusional effects of pressure waves, 

application to the total area would be far too conservative. The considered area has a 

length that is equal to the joint length Lj in the perpendicular direction and a width Wj as 

defined by a 2D calibration that is explained in detail hereafter. The process is performed 

in both the X and Y directions separately; the most critical result is retained.  

 

Determination of the width Wj of the 1D strip that results in the exact total force under 

the slab can be done if measurements of net uplift forces on similar slabs are available. 

For spillway flow, such direct force measurements on 2D slabs are available from 

physical model tests (Bellin and Fiorotto, 1995). When subtracting the time-averaged 

spatially distributed dynamic surface pressure field from these the strip width can be 

defined. The 1D approach is thus calibrated based on 2D model tests for hydraulic jumps. 

It is assumed that this relationship holds for all possible flow conditions in the basin. 

 

Bellin and Fiorotto (1995) describe the net uplift force on a slab as follows: 
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in which  is function of the instantaneous spatial pressure distribution over the total slab 

surface, C
+

p and C
-
p are the positive and negative dynamic pressure coefficients,  is the 

specific weight of the water, and finally lx and ly are the slab dimensions in the X-and Y-

directions respectively.  depends on the shape of the slabs and on the ratios of the slab 

length to the integral scales x, y in both X and Y directions. Bellin and Fiorotto (1995) 

provided direct experimental evaluation of the uplift coefficient  for a wide range of 

slab shapes and Froude numbers of the incoming flow field. This was performed by 

simultaneous measurements of pressures underneath simulated slabs and net uplift forces 

on the slabs.  

 

For jet impact, however, no such measurements are available in literature. It is proposed 

to use the values obtained for hydraulic jumps with similar Froude numbers and ratios of 

slab length to integral scales. 



The values highly depend on the ratios ly/y and lx/x. For very small and very high 

ratios,  theoretically tends towards zero. In between, a maximum value is obtained for 

ratios between 2 and 4, assuming that maximum pulses occur at both slab joints and a 

minimum pressure occurs in between. The ratios tested by Bellin and Fiorotto (1995) 

equal 0 to 2 for ly/y and 0 to 10 for lx/x. 
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Figure 5. Determination of Pressures Acting Underneath the Slab Based on the Average 

Values of Maximum Pressures Along Opposite Surface Joints 

 

 

Transient excitation frequencies and related steel stresses: The fundamental resonance 

frequency of a joint fres is a function of the wave celerity c and the joint length Lj (Figure 

2). The inverse Tres expresses the the average persistence time Tres of a pressure pulse. 

For example, for celerities of 100-500 m/s and joint lengths of 10-20 m, Tres is written: 
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For steel anchors that are 2 m long and slabs that are 1.5 m high and 15 m long, and for a 

steel area density of 4 cm
2
/m

2
, the time periods necessary for pressure pulses to reach the 

static and dynamic steel stresses are 0.015 sec respectively 0.03 sec. In this case, pressure 

waves through the joints have a persistence time that easily allows reaching the dynamic 

steel stresses in the anchors. If this is not the case, static stresses might be more realistic.  

 

Probability of occurrence: The probability of occurrence of extreme pressure pulses is 

defined based on a Gaussian probability distribution for low and intermediate pulses and 

a Type-I probability distribution for extreme positive pulses (Toso and Bowers, 1988). 

Expressing Z as (X-)/, in which X are the pressure values,  stands for the mean 

pressure value and  for the standard deviation of the pressure fluctuations, the following 

probability density distributions can be defined: 
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      for Type I distribution   (13) 

 

Based on physical model experiments, it has been found that, for positive Z-values of up 

to about 2, a Gaussian distribution may be used. For higher Z-values, a Type I 

distribution seems more appropriate. A comparison with probabilities derived from 

pressure records measured on the physical model shows that the Type I distribution may 

be used up to Z values of around 12-13. At higher Z values, the pressure pulse is assumed 

too localized in space and of no direct relevance to slab uplift. 

 

Numerical computations of transient pressures under a lining: A 1D transient two-phase 

numerical model has been developed to compute underpressures between the slabs and 

the underlying foundation. Detailed characteristics of the numerical model and the used 

equations can be found in Bollaert and Schleiss (2005). The model needs pressures 

measured at the joint entrances, for example on a physical model, as input data. This is 

presented in Figure 6.  The model defines the force under the slab as: 
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in which Aui stands for the area of application of pui. For sake of simplicity, each area of 

the five points pui has been taken equal to 1/5
th

 of the total slab area. The uplift force is 

then computed as the arithmetic average of the underpressures times the total slab area. 

The influence of transient pressure waves on the net uplift forces on the slabs can be 

expressed by means of a transient amplification factor defined as the ratio of the 

average underpressure to the average of the maximum surface pressures psj: 
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The amplification factor only accounts for the underpressures and not for the dynamic 

surface pressure field. It defines the maximum amplification that the underpressures may 

exhibit due to transient wave effects in the joint. Hence, for a transient slab uplift 

computation, the dynamic underpressures are simply multiplied by this amplification 

factor to obtain fully transient values (Figure 5).  

 
 ps1 ps2

pu1 pu2
pu3 pu4

pu5

ps1-2 = average value of maximum surface pressures along the joints

pu1-5 = computed transient pressure values underneath slab

ps1 ps2

pu1 pu2
pu3 pu4

pu5

ps1-2 = average value of maximum surface pressures along the joints

pu1-5 = computed transient pressure values underneath slab  
 

Figure 6. Methodology of Numerical Computation of Slab Uplift Pressures. 
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Figure 7. Result of Transient Pressure Computations For a Jet Impacting a Lining. 

 

Figure 7 shows the result of a numerical computation of transient pressures acting 

underneath a lining. The pressures acting at the joint entrances have been deduced from 

physical model experiments of a dam in the US. When pressure pulses enter quasi 

simultaneously at both joint entrances (surface peaks 1 and 2), an amplification of these 

pressures is obtained over the whole joint length (transient peak). Transient waves are 

amplified only at low frequencies, i.e. maximum a few Hz. Also, all computed pressure 



pulses have a duration of minimum 0.10 sec, much higher than the minimum time period 

of 0.03 sec. required to double the steel stresses. Second, higher frequencies are of no 

influence to the transients. This is in agreement with the fundamental resonance 

frequency of the assumed open-open boundary resonator system. For a joint length of 18 

m and an average wave celerity c of 100 m/s, one obtains a resonance frequency < 3 Hz.  

 

The amplification factor  has been computed for two different celerity-pressure 

relationships, corresponding to low (0-2 %) and high (5-10 %) air concentrations in the 

slab joints and directly defining the damping of the transients (Bollaert, 2003). For 

practice,  amplification values of 1.35 for jet impact and 1.20 for hydraulic jumps have 

to be used. 

 

Computational Methodology  

 

1. Determine integral scale of pressure fluctuations (based on theory and/or physical 

model experiments) and check plausibility of time-averaged surface pressures.  

2. Determine pressure coefficients along upper face of lining (numerical grid) 

3. Choose initial slab dimensions and joint/fissure locations 

4. Determine pressure coefficients along joints between the slabs of the lining or 

along fissures through the lining 

5. Determine “joint/fissure length”-averaged values of the maximum dynamic 

surface pressures for the X (longitudinal) and the Y (transversal) direction. 

6. Determine width of the 1D strip based on Bellin and Fiorotto (1995). 

7. Multiply the so defined underpressures/forces by a transient amplification factor 

to account for transient wave effects. 

8. Determine fundamental resonance frequency and average persistence time of 

pressure pulses. Compare with time duration necessary for dynamic steel stresses 

to develop.  

9. Choose final slab dimensions and determine necessary steel area based on the 

spring-mass equation and allowable elastic steel stresses.  

 

Based on the above design method, Figure 8 shows the steel stresses that may develop in 

the anchor bars of a new plunge pool lining design for a high-head arch dam in 

Switzerland. The computed steel stresses are presented as a function of the longitudinal 

location of a transversal fissure that has been imagined in the lining and that allows 

transfer of jet impact pressures underneath the lining. The blue surface corresponds to the 

total slab area between two construction joints. 

 

 

CONCLUSIONS AND RECOMMANDATIONS 

 

The present paper illustrates a new method for designing concrete linings of stilling 

basins against sudden uplift by impact of turbulent flows. The method is valid for any 

type of turbulent flow environment provided that the turbulent pressures of that flow can 

be statistically described by means of pressure coefficients.  
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Figure 8. Steel Stresses Computed as a Function of the Position of a Fissure in the Lining 

and For Different Anchor Bar Diameters and Spacings. 

 

The method uses time-averaged dynamic pressures along the upper face of the lining and 

supposes a transfer of peak pressure pulses through the joints to determine the pressures 

acting along the lower face of the lining. Based on detailed laboratory measurements of 

net uplift forces on slabs for different flow conditions (Bellin and Fiorotto, 1995), the 

total underpressure can be derived by adding the time-averaged surface pressure field to 

the laboratory measurements of the net uplift pressure. As such, the peak pressure values 

that are supposed to act under the slabs are applied over a restricted area of the slab to 

comply with the total underpressure measured in the laboratory. Because the small-scale 

laboratory tests did not account for transient waves, these peak pressure pulses have then 

to be multiplied by an amplification factor accounting for transient wave effects through 

the joints. Finally, subtracting the computed surface pressure field from the corrected 

underpressures results in transient net uplift pressures and forces on the slabs. Use of a 

differential equation valid for a spring-mass system then allows dimensioning the 

necessary steel area of the slab anchors. The method has already been applied on real-life 

studies of stilling basin design in both the western US and central Switzerland. The new 

lining of the latter stilling basin is actually under construction.  
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